694 research outputs found

    Alternative Way of Shifting Mass to Move a Spherical Robot

    Get PDF
    The method proposed calls for suspending a payload by use of four or more cables that would be anchored to the inner surface of the sphere. In this method, the anchor points would not be diametrically opposite points defining Cartesian axes. The payload, which includes the functional analog of the aforementioned control box, would contain winches that would shorten or lengthen the cables in a coordinated manner to shift the position of the payload within the shell

    Inexpensive Clock for Displaying Planetary or Sidereal Time

    Get PDF
    An inexpensive wall clock has been devised for displaying solar time or sidereal time as it would be perceived on a planet other than the Earth, or for displaying sidereal time on the Earth. The concept of a wall clock synchronized to a period other than the terrestrial mean solar day is not new in itself. What is new here is that the clock is realized through a relatively simple electronic modification of a common battery-powered, quartz-crystal-oscillator-driven wall clock. The essence of the modification is to shut off the internal oscillator of the clock and replace the internal-oscillator output signal with a signal of the required frequency generated by an external oscillator. The unmodified clock electronic circuitry includes a quartz crystal connected to an integrated circuit (IC) that includes, among other parts, a buffer amplifier that conditions the oscillator output. The modification is effected by removing the quartz crystal and connecting the output terminal of the external oscillator, via a capacitor, to the input terminal of the buffer amplifie

    Time Distribution Using SpaceWire in the SCaN Testbed on ISS

    Get PDF
    A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream

    General No-Scale Supergravity: An F{\cal F}-SU(5)SU(5) Tale

    Full text link
    We study the grand unification model flipped SU(5)SU(5) with additional vector-like particle multiplets, or F{\cal F}-SU(5)SU(5) for short, in the framework of General No-Scale Supergravity. In our analysis we allow the supersymmetry (SUSY) breaking soft terms to be generically non-zero, thereby extending the phenomenologically viable parameter space beyond the highly constrained one-parameter version of F{\cal F}-SU(5)SU(5). In this initial inquiry, the mSUGRA/CMSSM SUSY breaking terms are implemented. We find this easing away from the vanishing SUSY breaking terms enables a more broad mass range of vector-like particles, dubbed flippons, including flippons less than 1 TeV that could presently be observed at the LHC2, as well as a lighter gluino mass and SUSY spectrum overall. This presents heightened odds that the General No-Scale F{\cal F}-SU(5)SU(5) viable parameter space can be probed at the LHC2. The phenomenology comprises both bino and higgsino dark matter, including a Higgs funnel region. Particle states emerging from the SUSY cascade decays are presented to experimentally distinguish amongst the diverse phenomenological regions.Comment: 8 pages, 4 figures, 4 tables; Version accepted for publication in Physics Letters

    Detecting Negative Obstacles by Use of Radar

    Get PDF
    Robotic land vehicles would be equipped with small radar systems to detect negative obstacles, according to a proposal. The term "negative obstacles" denotes holes, ditches, and any other terrain features characterized by abrupt steep downslopes that could be hazardous for vehicles. Video cameras and other optically based obstacle-avoidance sensors now installed on some robotic vehicles cannot detect obstacles under adverse lighting conditions. Even under favorable lighting conditions, they cannot detect negative obstacles. A radar system according to the proposal would be of the frequency-modulation/ continuous-wave (FM/CW) type. It would be installed on a vehicle, facing forward, possibly with a downward slant of the main lobe(s) of the radar beam(s) (see figure). It would utilize one or more wavelength(s) of the order of centimeters. Because such wavelengths are comparable to the characteristic dimensions of terrain features associated with negative hazards, a significant amount of diffraction would occur at such features. In effect, the diffraction would afford a limited ability to see corners and to see around corners. Hence, the system might utilize diffraction to detect corners associated with negative obstacles. At the time of reporting the information for this article, preliminary analyses of diffraction at simple negative obstacles had been performed, but an explicit description of how the system would utilize diffraction was not available

    Efficient Switching Arrangement for (N + 1)/N Redundancy

    Get PDF
    An efficient arrangement of four switches has been conceived for coupling, to four output ports, the output powers of any subset of four devices that are members of a redundant set of five devices. In normal operation, the output power of each of four of the devices would be coupled to one of the four output ports. The remaining device would be kept as a spare: normally, its output power would be coupled to a load, wherein that power would be dissipated. In the event of failure of one of the four normally used devices, that device would be disconnected from its output port and connected to the load, and the spare device would be connected to the output from which the failed device was disconnected. Alternatively or in addition, the outputs of one or more devices could be sent to ports other than the ones originally assigned to them

    Displacing Unpredictable Nulls in Antenna Radiation Patterns

    Get PDF
    A method of maintaining radio communication despite the emergence of unpredictable fades and nulls in the radiation pattern of an antenna has been proposed. The method was originally intended to be applied in the design and operation of a radio antenna aboard a robotic exploratory vehicle on a remote planet during communication with a spacecraft in orbit around the planet. The method could also be applied in similar terrestrial situations for example, radio communication between two ground vehicles or between a ground vehicle and an aircraft or spacecraft. The method is conceptually simple, is readily adaptable to diverse situations, and can be implemented without adding greatly to the weight, cost, power demand, or complexity of a system to which it may be applied. The unpredictable fades and nulls in an antenna radiation pattern arise because of electromagnetic interactions between the antenna and other objects within the near field of the antenna (basically, objects within a distance of a few wavelengths). These objects can include general vehicle components, masts, robotic arms, other antennas, the ground, and nearby terrain features. Figure 1 presents representative plots of signal strength versus time during a typical pass of a spacecraft or aircraft through the far field of such an antenna, showing typical nulls and fades caused by nearby objects. The traditional approach to ensuring reliability of communication in the presence of deep fades calls for increasing the effective transmitter power and/or reducing the receiver noise figure at the affected ground vehicle, possibly in combination with appropriate redesign of the equipment at the spacecraft or aircraft end of the communication link. These solutions can be expensive and/or risky and, depending on the application, can add significantly to weight, cost, and power demand. The proposed method entails none of these disadvantages

    Victim Simulator for Victim Detection Radar

    Get PDF
    Testing of victim detection radars has traditionally used human subjects who volunteer to be buried in, or climb into a space within, a rubble pile. This is not only uncomfortable, but can be hazardous or impractical when typical disaster scenarios are considered, including fire, mud, or liquid waste. Human subjects are also inconsistent from day to day (i.e., they do not have the same radar properties), so quantitative performance testing is difficult. Finally, testing a multiple-victim scenario is difficult and expensive because of the need for multiple human subjects who must all be coordinated. The solution is an anthropomorphic dummy with dielectric properties that replicate those of a human, and that has motions comparable to human motions for breathing and heartbeat. Two airfilled bladders filled and drained by solenoid valves provide the underlying motion for vinyl bags filled with a dielectric gel with realistic properties. The entire assembly is contained within a neoprene wetsuit serving as a "skin." The solenoids are controlled by a microcontroller, which can generate a variety of heart and breathing patterns, as well as being reprogrammable for more complex activities. Previous electromagnetic simulators or RF phantoms have been oriented towards assessing RF safety, e.g., the measurement of specific absorption rate (SAR) from a cell phone signal, or to provide a calibration target for diagnostic techniques (e.g., MRI). They are optimized for precise dielectric performance, and are typically rigid and immovable. This device is movable and "positionable," and has motion that replicates the small-scale motion of humans. It is soft (much as human tissue is) and has programmable motions

    Inspiration from Intersecting D-branes: General Supersymmetry Breaking Soft Terms in No-Scale F{\cal F}-SU(5)SU(5)

    Full text link
    Motivated by D-brane model building, we evaluate the F\cal{F}-SU(5)SU(5) model with additional vector-like particle multiplets, referred to as flippons, within the framework of No-Scale Supergravity with non-vanishing general supersymmetry breaking soft terms at the string scale. The viable phenomenology is uncovered by applying all current experimental constraints, including but not limited to the correct light Higgs boson mass, WMAP and Planck relic density measurements, and several LHC constraints on supersymmetric particle spectra. Four interesting regions of the parameter space arise, as well as mixed scenarios, given by: (i) light stop coannihilation; (ii) pure Higgsino dark matter; (iii) Higgs funnel; and (iv) light stau coannihilation. All regions can generate the observed value of the relic density commensurate with a 125 GeV light Higgs boson mass, with the exception of the relatively small relic density value for the pure Higgsino lightest supersymmetric particle (LSP). This work is concluded by gauging the model against present LHC search constraints and derivation of the final states observable at the LHC for each of these scenarios.Comment: 13 pages, 4 Figures, 4 Table
    • …
    corecore